Case Report: A Breast Cancer Patient Treated with GcMAF, Sonodynamic Therapy and Hormone Therapy

TOSHIKO INUI¹, ³, KAORI MAKITA¹, HIRONA MIURA¹, AKIKO MATSUDA¹, DAISUKE KUCHIIKE¹, ³, KENTARO KUBO¹, MARTIN METTE¹, YOSHIO ENDO², YOUSHIHIRO UTO³, HITOSHI HOFI³, NORIHIRO SAKAMOTO¹, ⁴

1 Saisei Mirai Clinics. 2 Kanazawa University. 3 The University of Tokushima. 4 Kobe University.
GcMAF timeline

1991 Dr Yamamoto developed GcMAF
1992 Dr Yamamoto visited Dr Hori at Tokushima University
 GcMAF research started at Tokushima University
1998 Dr Uto joined Dr Hori’s GcMAF research team
2002 First research papers published on GcMAF in the journals
 Biotherapy and Comparative Biochemistry & Physiology
2010 Tokushima University began collaborating with Saisei Mirai to
 develop Second Generation High Dose GcMAF
2011 Second Generation GcMAF produced in our Cell Processing
 Center (CPC) for patients. Start of clinical use.
2013 Two research papers published in Anticancer Research by
 Saisei Mirai & Tokushima University
2013 Over 1000 patients treated with Saisei Mirai GcMAF
Comparison between 1st Generation and 2nd Generation GcMAF

First Generation GcMAF
- Developed by Dr Yamamoto in 1991
- Low concentration (100 ng/0.25 ml, 1 dose)
- Low stability at room temperature
- 25-(OH) Vitamin D3 Affinity Column

Second Generation GcMAF
- Developed by the University of Tokushima and Saisei Mirai in 2011
- High concentration (1500 ng/0.5 ml, 1 dose)
- Significantly higher stability and macrophage activating activity
- New patent pending production process

GcMAF production in vivo

B cell membranous β-galactosidase

Gc macrophage activating factor (GcMAF)

Glycoprotein (Gc Protein)

T cells

sialidase

Biological activity of GcMAF

- increased phagocytic activity
- superoxide radical generation
- anti-angiogenic effect
- anti-tumor effect
Macrophage phagocytic activity assay of 2nd generation GcMAF

- Using mouse macrophages and sheep red blood cells
- Red blood cells (white) are opsonized which marks them for ingestion and destruction by activated macrophages, seen as white cells in the purple areas
- Calculate the Phagocytosis (ingestion) Index (PI) to determine the level of activity

\[
\text{Ingestion index} = \frac{\text{Number of phagocytic macrophages}}{\text{Number of total macrophages}} \times \frac{\text{Number of phagocyted SRBC}}{\text{Number of phagocytic macrophages}} \times 100
\]

Stability of 2nd Generation GcMAF

- 4 °C > 1 year
- 20 °C 4 weeks
- 40 °C 1 week
Sensitizers for SDT

Modified Tin Chlorin e6

- Compound made from chlorophyll a in chlorella
- Sensitive to ultrasound and specific wavelengths of light

5-aminolevulinic acid (5-ALA)

- Natural amino acid found in all animals and plants
- Used to visualize cancer tissue in neurosurgical procedures
- Sensitive to ultrasound and specific wavelengths of light
Mechanism of Sonodynamic Therapy (SDT)

- Ultrasound is physical energy
 - Cavitation
 - Sonoporation
- Energy causes activation of sonosensitizer
- Produces singlet oxygen and free radical oxygen in cancer cells
- Causes coagulative necrosis (cancer cell death)

Mechanism of action - SDT + GcMAF
Sonodynamic Therapy (SDT)

Application of gel

Application of ultrasound to tumor area
Breast cancer patient: Medical history

- 55-year-old female with recurrent breast cancer
- Sep 2009 - Lumpectomy of left breast tumor with skin invasion
- Patient refused to receive any further standard treatment after the operation
- Oct 2011 - Patient noticed right axillary tumor. Currently no treatments being undertaken
- The tumor kept growing and tumor markers were increasing
- Jul 2012 - Needle aspiration biopsy was done to confirm the recurrence of the tumor
- Jul 2012 - Patient started receiving Hyperthermia (total 24 times with Thermotron RF-8) and i.v. high dose vitamin C (total 10 times)
- Jun 2013 - Patient presented in my clinic
Symptoms (at presentation)

• Cough
• Back pain
• Severe swelling of the right arm (edema)

Pathological findings

• Invasive Ductal Carcinoma (IDC), N0 (no nodes are involved), Margin (−), Grade 3, ER+, PR+, Her2+
Treatment Overview

• Second Generation High Dose GcMAF
 o 0.5 ml, 2 times weekly (i.m.)
 o Total 21 times

• Sensitizers for SDT
 o Modified Tin Chlorin e6, 25 mg (i.v.)
 o 5-aminolevulinic acid (5-ALA), 10 mg/kg BW (oral)
 o Total 19 treatment days of SDT 12-Jun-2013 to 30-Sep-2013

• Aromatase Inhibitor
 o Aromasin, 25 mg/day (oral)
PET CT and CT showing disappearance of lung pleural effusion

PET CT 6-JUN-2013

Lung pleural effusion and nodular shadow before treatment with SDT.

CT 9-SEP-2013

Lung pleural effusion and nodular shadow disappeared after treatment with SDT.
A patient’s monocytes will generally rise in the early stages of High Dose GcMAF and indicates a good response to treatment.
Tumor Marker NCC-ST-439

- Normal range NCC-ST-439 < 4.5 U/ml *
- * for 50 years of age or older

- [Graph showing values from 3170.1 to 201.5]

Tumor Marker CA15-3

- Normal range < 27.0 U/ml

- [Graph showing values from 64.9 to 12.0]

Tumor Marker ICTP

- Normal range < 4.5 ng/ml

- [Graph showing values from 7.7 to 5.5]
Results

• Improvement of symptoms such as cough, back pain and rt. hand edema
• Remarkable improvement of tumor markers
• Decreased size of the axillary tumor
• No serious side effects from the treatments
Conclusion and perspective

• We showed the case report of a terminal breast cancer patient having had good effects from SDT, GcMAF and hormonal therapy
• We are expecting good outcomes from the next PET CT scan
• It suggests SDT and GcMAF can be used with standard treatments to get better outcomes for cancer patients
• We are planning to further refine and improve our protocols with SDT and GcMAF